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Abstract-In this paper, exploiting repetitive properties, a constrained digital regulation technique for first order hy- 
perbolic PDE systems is proposed that guarantees the stability and performance of the closed loop system. 
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INTRODUCTION 

Most of the process con~-ol algoritl~ns in practice are based on 
the finite dimensional control theory. However, many chemical pro- 
cesses are described by partial differei~al equations @DE's) and 
are infinite dflnensional in nature due to spatial vm-iation. Espe- 
cially when the convection is dominant and thus diffitsion can be 
ignored, chemical processes that are described by a system of fn~t 
order hyperbolic PDE's. Such processes include tubular reactoz~ 
[Ray, 1981], fixed bed reactors [Stangeland and Foss, 1970] and 
pressure swinging adsorption [Rt~hven and Sirca; 1994]. More 
examples can be found in [Rhee et al., 1 986]. Conventionally such 
ini~nite dimensional systems described by PDE's are controlled by 
finite din~ensional controllers that are designed tl~ough finite dimen- 
sional reduction of the process model via the spatial discrefization 
techniques. However, such sp~al discretlzation leads in general to 
a high order finite dimensional system. Moreover, the finite dimen- 
sional conlrollers based on the finite dimensional models can lead 
to an unstable closed loop system. Although stability is achieved, 
the performance of such controllers can be very poor when they 
are applied to an infinite dimensional system. For diffusion domi- 
nant systems that are described by parabolic PDE's, there are in- 
finitely many discrete modes among which only finite number of 
:-nodes are slow and all the rests are stable fast [Balas, 1979; Fried- 
man, 1976]. Hence, for such systems, a meanmgfffl low dimensional 
approximation possible through modal decomposition. However, 
for fn~t order hypertx)lic PDE's, all the modes have the sane, or 
almost the same, energy. Thus, a low dimensional model through 
modal decomposition is not possible since an ini~-tite number of 
:-nodes are necessary for accurate ~0proxm:ation of the original sys- 
tem. As a result, even if the finite dimensional high order system 
model obtained through spatial d/scretization ks :-educed by the op- 
eration data based model reduction techniques such as Karhttnen- 
Lceve decomposition [Sirovich, 1987], such reduced system may 
work very poorly under the siltation different from operation data. 
Due to such prob- Iems, the opttmal control approach was adopted 
for the control of hyperbolic PDE systems, that leads to infnfite di- 
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mensionaI con~-olle1~ [Wag, 1965; Lo, 1973; Balas, 1986]. Recently 
the geometric con~oI theory based design of infinite dimensional 
controller without resorting to optimal control techniques was pro- 
posed in Chnstofides and Daoutidis [1996]. 

The aforementioned optimal and geom~-ic control s~-ategies for 
hyperbolic PDE systems are unconstrained, continuous and itK~fite 
dimensional ones that are qtfite complicated Conslraints are always 
present in any practical control problems. For instance, the physi- 
cal restriction of the actuator limits the value the input can asstrne. 
Moreover due to safety, em~irorm~entaI regulation and so on, the 
states of the plait are desired to lie within a designated area in the 
state space. Moreover, since all the chemical processes are con- 
trolled by computez~ nowadays, these control teclmiques need to 
be implemented in discrete ~ne. Hence it is clearly desirable to de- 
velop some cons~amed finite dimensional digital con~oI s~ategies 
that guarantee the stability and l:erformance of the closed loop sys- 
tem. In this paper, we first show that the hyperbolic PDE solutions 
are repetitive in natLtre. Exploiting this, we reformulate the con- 
strained regulation problem of hyperbolic PDE systems as a con- 
slrained batch process con~oI problem where the COl~ol action is 
updated in discrete time. For the resulting batch process control prob- 
Ie~-n, we adopt the recently developed Q-ILC tect~iques [Lee et al., 
1996, 2000; Chin et al., 1999; J~ag et al. 1999], that is a Ieammg 
control s~-ategy for batch processes. The resulting r~ulation strat- 
egy is a conslramed, digital and finite dimensional one. The con- 
vergence of the con~roI law is guaranteed from the convergence of 
Q-ILC techniques. Ivloreovei; the perfom~ance of the controller is 
also g~anteed.  The proposed methodology is ilktslrated with a 
tubular reactor example. 

P R E L I M I N A R I E S  ON Q-ILC 
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In this section, we bnefly review the Q4LC technique [Lee et 
aI., 1996, 2000], which is a model-based iterative leaming control 
techique developed specifically for multiva'iable bach process 
conlroI problems. It can be regarded as a generalization of the ~'a- 
ditional ILC techiques developed mainly for robot-ann trff~rfing 
The Q-ILC technique can be ~tsed to recursively refine the input 
trajectory based on the ~ackmg error obtained in the previous batches. 

Consider an i~-input, r~-output discrete-~ne linear ~-ne varying 
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batch process that is run over a prespecified thne interval. Since 
only the ~ns ient  behavior exists in the operation of a batch pro- 
cess and most of the chemical processes are nonlinear, the process 
model for control is typically described by linem tinge varying dif- 
ference equations that are obtained for instance through lineartza- 
fion around the desired trajectory. Since a batch operation is defined 
over a finite ~m-ne interval, a general and convenient description of 
process dynamics is a linear algebraic system relining the input se- 
quence to the output sequence over the ei~ire batch horizoi1 Define 

yr = [yr(1)yr(2)...yr(N)] 

ur = [ur(0)ur(1) " ur(N - I)1- (I) 

Then, we may describe the effect of u on y as 

y=Gu+b (2) 

where G is the dynamic gain malrgx which is assumed to be known 
(through identification or linemization of a nonlinear model with 
respect to a reference trajectory) and b is the bias vector which may 
be ut~nowi1 The causality of the tx-ocess resh-icts O to have a lower 
triangular strucaxre. 

Now define the error trajectory vector: 

e=yd-y (3) 

where Yd is the desired reference output Irajectory. The error gajec- 
tory may depend on several things including input u and initial con- 
dition (i.e., condition at the start of a batch). 

Let ek be the enor vector at the kth batch. Theil, (2) can be re- 
written as 

e~+ 1 =e~- GAuk+l. (4) 

where AU~l=U~l-th. 
Q-ILC is derived based on model (4) and solves the following 

minimization at the start of  the kth batch: 

. I r + r 
r,~n'l~ { %k_ l e%k_ l ku~Rku~} (5) 

where Q and R are PD (positive definite) matrices. 
For the unconstrained case, the resulting control Ia~v is 

%=u~-i + Hee~ - l,~-I (6) 

where 

HQ=(GrQG+R) - IGrQ. (7) 

As in model predictive control, we may incorporate cons~-aints 
imposed on the intmt and output variables into the above quadratic 
minknization. In ti~is case, (5) becomes a standard qua&-atic pro- 
gramming problem. 

It has been shown that the Q-ILC algorithm given by (6) has the 
following properties [Lee et aI., 2000]: 
1. Convergence  

If the desn-ed trajectory is reachable (this is always true when 
we have sufficient control ~puts and thus O has full row rink), the 
error trajectory e for system (4) converges to zero asymptotically 
as the number of batch grows for any choice of Q>0 and R>0. 
Otherwise the Q-ILC minimizes the error. The same is true for the 
com~-ained algoritlm~ under some reasonable assumptions on the 
choice of cons~-aints. 
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2. Robustness  
The convergence property is retained when the model error is 

within certain limits. The region of atlractivity can be increased by 
increasing the input weight R. Howevei; tim slows down the rate 
of  convergence. 
3. Dis turbance  Sensit ivity 

The severe sensitivity of intmt signal to high frequency compo- 
nents of the o~qmt error in other gaditional ILC algorithms can be 
abated without losing the com~ergence tx-operty. Indeed it can be 
adjusted at will by the choice of  R. 

F O R M U L A T I O N  

The behavior of fn'st order hyperbolic PDE systems cannot be 
reduced to a low dimensional manifold. Hence the available con- 
~-ol design techniques for such systems results in a unconslrained 
infinite dimensional controller that updates the ds control 
in continuous time. However as we will show in this section the 
solution of hyperbolic PDE is repetitive in na~,tre. Hence we show 
that, updating the cor~ol iteratively, we can obtain a simple con- 
shamed dig~al finite dimensional re~flahon strategy for f~ t  order hy- 
perbolic PDE systems that guarantees the stability and performance. 

Consider the linear first order hyperbolic partml differer~l equa- 

tion: 

Ox Ox 
-~ = - A ~ z  +B(z)x +C(z)u 

with the boundary condition 

x(t, 0)=:~ 

and the initial condition: 

x(0, z) =xdz), Vze [0, L]. 

Such system may be obtained from the linearization around the 
steady state of the quasi-linear lust order PDE systems such as reac- 
tion convection processes: 

ax = AaX +F(x)x +O(x)u 
at Oz 

or the nonlinear fn-st order PDE systems: 

Ox Ox 
-~ = - A ~ z  +H(x, u). 

Here we assume the matrix A is simple and is in the %1ii1 a[00 !] 
A = as 

0 

where al->a2- > ->a~>0. Hence we have 

where B,(z) and Cj(z) are the ith row of B(z) and C(z), respectively. 
In this paper we will consider a finite number of conlrol actLkators 
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Fig. 1. Sensors and actuators. 
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Fig. 2. Characteristic lines for x~. 

and finite number of point sensors. Namely different control inputs 
are applied in each prespecified mten~als and the states are meas- 
uxed many but finite number of locations by point sensors as de- 
picted m Fig. 1. 

In this pat:ez; we consider the r~ulation problem of the hyperbolic 
PDE systems. The characteristic lines for x, are shown in Fig. 2. 

Employing the methcd of characteristics [Ray, 1981], the sys- 
tem on the characteristic line can be reduced to an ODE: 

d~; =B(z)x +C(z)u. 
dt ,, ' 

Instead of continuous update of control input, we wilI adopt digital 
control where control input is renewed at discrete times. For this 
define 

L 
r = - - .  

% 

Now consider the region over the time mtervaI [% "c+T] where a 
characteristic line passing through (L, "c+T) is shown for each sub- 
system for xj as depicted in Fig. 3. 

If the control input is fixed over the above region, the solution 
above the characteristic line for x, will be the same for each z. Now 
consider successive such blocks and assume the con~roI action is 
fixed over each block. In each block, the solution will be constant 
at each spatial position z above the characteristic line for x, whereas 
the transient behavior roll take place below the characteiistic line 
for x~. Exploiting this, we consider such a block as a batch ignor- 
ing the h-ansient behavior below the characteristic line for x,. Then 

r + T  

a I 

0 z L 

Fig. 3. Representative characteristic lines. 

the digital regulation of the hyperbolic PDE systems reduces to a 
batch process con~-ol problem for whch numerous techiques are 
available. In this paper, we will apply the Q-ILC techmktue that has 
been developed recently. In each Neck, the characteristic line for 
depicted in Fig. 3 will be used as the representative charactezistic 
line for x~ since, above the characteristic line for x~, x~ will be the 
same on any characteristic lines for x,. 

Since the Q-ILC technique requfles the discrete time model, the 
ODE's need to be discretized. Exact discretization ['Rugh, 1996] is 
desirable. However, if this is not possible, approximate discretiza- 
tion can also be used. Notice that the time scales are different for 
dynamics of each x, on the representative cha-acteristic line. Hence 
for coordination, sampling times of the ODE's on the representa- 
tive ct~-actezistic lines should be different for each xj. Namely, if 
At. is the samplmg tame for x,, the sampling tame for x,, At;, must 
be (aJa~) At,. Then the spatial location associated with the kth sam- 
pltng time will be the same for all x,'s. Now we assume the point 
sensors are located m each spattal location corresponding to a sam- 
pling point so that the location of point sensoz~ are the integer mul- 
tiple of a.At.. 

Through discretization, we get the following discrete state space 
mcdel  along characteristic lines: 

x(i+ 1)= S(i)x(i)+ C(i)u(i). 

Then G associated with this system is given by 

c(i) 0 0 
C(2) B(2)C(1) 0 

G = C(3) B(3)C(2) B (3)B(2)C(1) 
- - .  " . .  

C (N-  1) B (N-  I )C(N-2)  B(N-  1 )B(N-2)C(N-3)  

" ' "  0 

" ' "  0 

- - -  0 

- - -B(N-I) - - -B(2)C(1)  

With this discretized system, we are now ready to apply the Q-ILC 
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technique. 
From the convergence result of Q-ILC, the states at the dis- 

cretized points on the characteristic lines converge to the desired 
values. If tile discrefization is exact and the desired state is reach- 
able, then this in turn implies that the desired trajectory for original 
hyperbolic systems is achieved aloig tile dlaracteristic lines. Even 
if the desired state is reachable, the approximate discretization will 
usLkaIiy lead to minor off-set despite of the integral action of the Q- 
ILC. Tt~s results from the lack of degree of fi-eedom of coi~-oI action 
and, thus, will not happen if we have sufficient degree of fi-eedom. 
However, when the approximation is good enoLgh, this ok-set will 
be negligible since Q-ILC mitmnizes the off-set. Clearly if tile de- 
sired trajectory is achieved above the representative characteristic 
line for xj, it is achieved over each ei~k-e block. When tile desired 
~ajectory is not reachable, Q-ILC will minimizes the error between 
the desired Irajectory and the converged trajectory in the long am. 

Consider the nonisothermaI 0abular reactor that is a reaction con- 
vection process. We assume a fnst order endothe~nic reaction takes 
place m the reactor: 

A ~ B 

4.0 

Table 1. Process parameters 

Process parameter Value 

v (i-oJmin) 1 
E (cal/mol) 2.0x 104 
R (caI/moI -K) 1.987 
p (kg/tt) 0.09 
c e (caI/kg-K) 70 0.231 
ko (l/rain) 5x 1012 

U,~ (caI/min-K) 2000.0 
AH (caI/mol) 548.0001 
V (/t) 10 
L (111) 1 

�9 Stady State 

3,5 

g 

3,0 
8 
c 
o 
0 2.5 

2.0 

APPLICATION TO N O N I S O T H E R M A L  
TUBULAR R E A C T O R  

and the associated reaction kinetics follows the Arrhemus Law: 

_ (dCA] :k0 e-VRrcA 
\ d t  d.. 

where CA is the concen~-ation of species A; T is the reactor tem- 
perature; k0 is the ixe-exponential constant; E is the activation en- 
elgy; R is the gas constant_ We adopt the fonowing standard assump- 
floss on tile ideal tubular reactor: 

�9 Perfect radial mixing takes place 
�9 Diffusion is negligible 
�9 Densities and heat capacities for A and B are the same and con- 

stant 

E 

0.0 

345, 

340- 

335 - 

330 - 

325,  

0:2 0:4 o:6 0:8 1:o 
Z 

�9 Steady State 

- -  Polynomial Fit 

Under these assumptioixs tile species balance for A and energy 
balance become 

OC.____~, = at V~z* -k~ 

a T _  aT _AH,k0e-E,~rc~ + ~ ( T  _T) 
at V~zz p% p%v 

with the boundary conditions 

C,(0, t)= d~, T(0, t)=T ~ 

and initial conditions 

CA(Z, 0)=C,0(Z), T(z, 0)=T0(z) 

where v is the velocity of the flow; AH,. is the heat of reaction; p is 
the density; % is the heat capacity; Tj is the jacket temperature, U is 
the heat transfer ccefficient; V is the volume of reactor. The length 
of tile reactor L is assumed 1 m. Notice that these are quasi-linear 
hyperbolic PDEs. Tile process parameters are listed in Table 1. 

320 
0.0 & 0,4 ~ 0:6 , 0  

Z 

Fig. 4. Steady state profiles. 
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The desired steady state profile is assumed to be the one when 
the jacket tempera~-e ks const~lt as 350~ It ks depicted in Fig. 4. 

For the application of the controI slrategy proposed in this paper, 
we need linear hyperbolic PDEs. Hence we lineaiize tile quasi-linear 
hyperbolic PDEs around tile desired steady state. Since tile exact 
sokCion of desired steady state is difficult to fred, we obtain the an- 
alytic expression of the deshed steady state tl~ough the regression 
with the 8th order polynomial (see Fig. 4) and use it for lineariza, 
tion. It is 

C~(z)=4.00005 - 0.44522z- 1.72573z ~- 5.06454z3+ 12.70 I54Z ~ 
-8.70048z s- 1.92157z% 5.06086z 7- 1.76172z s, 

T=(Z)= 320.00048+91.32149z- 159.62909z? + I22.33974z 3 

Korean J. Chem. Eng.(Vol. 18, No. 5) 
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+23.97147z ~- 115.3329z~+ 76.04642z ~ 
- 13.0025 IzT- 2.43448z ~. 

Since the shape of  the desired steady state is simple, the fitting relative 
errar with the 8th order polynomial was less than 10 -~. Through Iine- 
mJzation, we have 

ON 1 ON 1 , -s (z) __ g -E/RT,,(.)~ . % 
--K0 e ,, X l - K 0 ~ e  k;~kZ)X2 =-v'o"zz RT.(z)  

axe_  vaX~ _ AN,k0 e-S/sr,,<~Xl 
at Oz 9% 

/(AH,), E - ~/~r,,(~)~ , .  U "~ U  j)+GV v)X +GV v  
with the boundary conditions 

Xl(0 , t)=0, x~(0, t)=0 

and initial conditions 

Xl(a 0)=x,0(z), x~(a 0)=x~0(z) 
where 

x,(t, z) =c~(t, z)-c~,(z), x,(t, z) =r(t, Z)-%Lz), u(t z)=T,(t, z)-350. 

Employmg the method of  characteristics, we have the following 
ODE's  along the characteristic Ime. 

dXl . - z ,~ r , , ( . )  _ g -r/~r,,(,t)~ , _, 
= --N0e X 1 - l ~ e  I~A.~.~,~,Y[)X 2 

d• AH{k0e-S/sr,,(~r)xl 
dt 0% 

FAH, g -e/~r<~,) . . . .  + U "~x~+ U u 
- / - - - - ' K o ~ e  " ~,~ WU 

\ 9 %  RT,(vt)  ' p % V J  p%V 

These ODE's a r e  discretized ruth the sampling time At=0.025 
min. For these ODE's, the exact discrefizafion is not possible and 
thus the apF-oximate dLscrefization technique is used. To obtain the 
better approximate diseretizafion, one can employ the more dis- 
crefiza~on within a sampling ~arne and solve them far x (k+l )  with 
initial condition x(k) and constant control u(k). 

Now we are ready to apply the con~roI slzategy proposed in this 
paper. For this, we assume the reactor is divided into five different 
zones with the same length and each zone is heated by separate heat- 
nag jacket_ lVloreover we assume the temperature and the concenlra- 
don are measured at every disca-etized point by point serxsors. Finally 
the control inputs are assumed to satisfy the sataration constraints: 

298_<T,(z)_<400 

or 

-52_<u_<50. 

The weighting matrices associated with Q-X,C are as follows: 

Since the control input must be the same over the each zone con- 
trolled by a heating jacket. We need the followmg constraints: 

Ausx~ =AIls•  1 . . . . .  Ausx~+7, V i  =0, I , . . . ,  4 .  

The simula~on of  the closed loop system starting from a non- 
steady state ~ajectory has been camed out. The simula~on results 
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Fig. 5. C o n v e r g e n c e  of  e~ w i t h  l inearized model .  
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Fig. 6. C o n v e r g e n c e  of  e~ w i t h  l inearized model .  
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Fig. 7. Convergence  of  u w i t h  l inearized model .  
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with the linearlzed model are shown in Figs. 5, 6 and 7 whereas 
those with the nonlinear model  in Figs. 8, 9 and 10. 
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Fig. 8. Convergence of eh with nonlinear model.  
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Fig. 9. Convergence of ee with nonlinear model.  
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Fig. 10. Convergence of u with nonlinear model.  

For both Iinearized and n~Iinear models, the trajeetones con- 
verge to the desired ones. Due to the step changes of the control input 

in the spatial di-eetion, the en-or trajectories of ee are not quite smooth 
In practice, these trajectories will be smoothen out since the exact 
step change is not possible physically. 

C O N C L U S I O N  

The existing control s~-ategies for systems described by first order 
hyperbolic PDE's are unconstrained, continuous ~xne and infinite 
dimemioilal ones that need to be apl~OXhnated for computer comoI. 
In this paper, we have proposed a cons~-ained finite dimensional clig- 
itaI regulation technique that guarantees the stability and perfolmance 
of the closed loop system. It is illustrated with an exmnple that the 
proposed technique is promising for computer conlrol of systems 
described by f ~ t  order hyperbolic PDE's subject to constraints. 
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