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Abstract—In this paper, exploiting repefitive properties, a constrained digital regulation technique for first order hy-
perbolic PDE systems is proposed that guarantees the stability and performance of the closed loop system.
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INTRODUCTION

Most of the process control algorithms m practice are based on
the finite dimensional control theory. However, marny chemical pro-
cesses are described by partial differential equations (PDE’s) and
are mfiite dimensional m nature due to spatial varnation. Espe-
cially when the convection 1s dominant and thus diffusion can be
gnored, chemical processes that are described by a system of first
order hyperbolic PDE’s. Such processes mclude tubular reactors
[Ray, 1981], fixed bed reactors [Stangeland and Foss, 1970] and
pressure swmging adsorption [Ruthven and Sucar, 1994]. More
examples can be found in [Rhee et al, 1986). Conventicnally such
mfimte dimensional systems described by PDE’s are controlled by
fimte dimensional controllers that are designed through fintte dunen-
sional reduction of the process model via the spatial discretization
techmques. However, such spatial discretization leads m general to
a high order finite dimensional system. Moreover, the fimite dimen-
sional controllers based on the fimte dimensional models can lead
to an unstable closed loop system. Although stability 15 aclieved,
the performance of such controllers can be very poor when they
are applied to an infimte dimensional system. For diffusion dormi-
nant systems that are described by parabohic PDE’s, there are m-
fiitely many discrete modes among which only fimite mumber of
modes are slow and all the rests are stable fast [Balas, 1979; Fried-
man, 1976). Hence, for such systerns, a mearingful low dimensional
approximation possible through modal decomposition. However,
for first order hyperbolic PDE’s, all the modes have the same, or
almost the same, energy. Thus, a low dimensional model through
modal decomposition is not possible since an nfmite number of
modes are necessary for accurate approximation of the origmal sys-
tem. As a result, even if the fimite dimensional high order system
mode] obtained through spatial discretization 1s reduced by the op-
eration data based model reduction techniques such as Karhunen-
Loeve decomposition [Sirovich, 1987], such reduced system may
work very poorly under the situation different from operation data.
Due to such prob- lems, the optimal control approach was adopted
for the control of hyperbolic PDE systems, that Jeads to mfinite di-
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mensional controllers [Wang, 1966; Lo, 1973; Balas, 1986] Recently
the geometric control theary based design of mfimte dimensional
controller without resorting to optimal control techmques was pro-
posed in Chrnistofides and Daoutidis [1996].

The aforementioned optimal and geometric control strategies for
hyperbolic PDE systems are unconstramned, continuous and nfmite
dimensional ones that are quite complicated Constramnts are always
present m any practical contro] problems. For mstance, the physi-
cal restriction of the actuator imits the value the mput can assume.
Moreover due to safety, envronmental regulation and so on, the
states of the plant are desired to lie within a designated area in the
state space. Moreover, since all the chemical processes are con-
trolled by computers nowadays, these control techruques need to
be mplemented m discrete tme. Hence it 1s clearly desirable to de-
velop some constramned finite dimensional digital control strategies
that guarantee the stability and performance of the closed loop sys-
tem. Inn thus paper, we first show that the hyperbolic PDE solutions
are repetitive in nature. Exploiting this, we reformulate the con-
stramed regulation problem of hyperbolic PDE systems as a con-
stramed batch process control problem where the confrol action 1s
updated m discrete time. For the resulting batch process control prob-
lem, we adopt the recently developed Q-ILC techmicues [Lee et al,
1996, 2000, Chm et al,, 1999; Jung et al. 1999), that 1s a learming
control strategy for batch processes. The resulting regulation strat-
egy 1s a constrained, digital and fimte dimensional one. The con-
vergerce of the control law 1s guaranteed from the convergence of
Q-ILC techmicues. Moreover, the performance of the controller 1
also guaranteed. The proposed methodology 1s illustrated with a
tubular reactor example.

PRELIMINARIES ON Q-ILC

In this section, we briefly review the Q-ILC techrque [Lee et
al, 1996, 2000], which 1s a model-based iterative learnmg control
technique developed specifically for multivariable batch process
control problems. It can be regarded as a generalization of the tra-
ditional ILC techniques developed mamly for robot-arm traming.
The Q-ILC techmique can be used to recursively refine the mput
trajectory based on the tracking emror obtamed m the previous betches.

Consider an n,-input, n-output discrete-time lmear time varying
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batch process that is run over a prespecified time mterval. Smee
only the transient behavior exists in the operation of a batch pro-
cess and most of the chemical processes are nonlinear, the process
model for control 1s typically described by linear tme varymg dif-
ference equations that are obtamed for instance through lmeariza-
tion around the desired trayectory. Since a batch operation 1s defined
over a fimte time mterval, a general and convernent description of
process dynamics is a linear algebraic system relating the put se-
quence to the output sequence over the entire batch horizon Define

Yy =ly"()y"(2)--y"(N)]
u =[u"(0)u’(1)--u(N-1]. ey

Then, we may describe the effectof uon y as
y=Gu+b 2)

where G 1s the dynamic gain matrix which 1s assumed to be known
(fhrough 1dentification or linearization of a nonlinear model with
respect to a reference trajectory) and b is the bias vector which may
be unknown The causality of the process restricts G to have a lower
triangular structure.

Now define the error trajectory vector:

e=y,~y @
where v, 1s the desired reference output trajectory. The error trajec-
tory may depend on several things meludmg mput u and mutial con-
dition (i.e., condition at the start of a batch).

Let ¢, be the error vector at the kth batch. Then, {2) can be re-
written as

o =6,— GALL,,. @

where Aug, =u,,—u,.
Q-ILC 1s denved based on model (4) and solves the following
mimmization at the start of the kth batch:

1
n}“mi{e;-lk—lQeklk— 1 +Au17c-RAuk} &)
%

where Q and R are PD (positive definite) matrices.
For the unconstramed case, the resulting control law 1s

u)’c=u:k—l+HQek— k=1 ©
where
He=(G'QG+R)'GQ. @

As m model predictive control, we may mcorporate constraints
mposed on the nput and output variables into the above quadratic
mmmuzation. In this case, (5) becomes a standard quadratic pro-
gramming problem.

It has been shown that the Q-ILC algorithm given by (6) has the
following properties [Lee et al., 2000]:
1. Convergence

If the desired trajectory 1s reachable (this s always true when
we have sufficient control mputs and thus G has full row rank), the
error trajectory e for system (4) converges to zero asymptotically
as the number of batch grows for any choice of Q>0 and R>0.
Otherwise the Q-ILC minimizes the error. The same is true for the
constramed algorithm under some reasonable assumptions on the
choice of constraints.

2. Robustness

The convergence property is retamed when the model error 1
within certain limits. The region of attractivity can be micreased by
mereasing the mput weight R. However, this slows down the rate
of convergence.
3. Disturbance Sensitivity

The severe sensitivity of mput sigral to high frequency compo-
nents of the output error in other traditional ILC algorithms can be
abated without losimg the convergence property. Indeed 1t can be
adjusted at will by the choice of R.

FORMULATION

The behavior of first order hyperbolic PDE systems cannot be
reduced to a low dimensional manifold. Hence the available con-
trol design techmques for such systems results m a unconstramed
mfimte dimensional controller that updates the distributed control
m continuous time. However as we will show m this section the
solution of hyperbolic PDE is repetitive in nature. Hence we show
that, updatmg the control tteratively, we can obtam a simple con-
stramned digttal finite dimensional regulation strategy for first order hy-
perbolic PDE systems that guarantees the stability and performeance.

Consider the lmear first order hyperbolic partial differential equa-
tion:

ax 9x

i _Aa_z +B(z)x +C(zu

with the boundary condition
x(t 0)=x,

and the mitial condition:
(0, 2) =x,(z), Vze [0, L].

Such system may be obtained from the linearization around the
steady state of the quasi-lineer first order PDE systems such as reac-
tion convection processes:

9x _ 0%
3 Aaz +F)x+G{(x)u

or the nonlinear first order PDE systems:

9x __ 0%
prie Aaz +H(x, u).

Here we assume the matrix A 1s simple and 15 m the form
a 0 -0
A= 0 a -0
;o
where a,2a,2 - 24a,>0. Hence we have

ot - amaz +Bi(z)x+ci(z)u

where B,(z) and C(2) are the ith row of B(z) and C(z), respectively.
In this paper we will consider a fimite number of control actuators
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Fig. 2. Characteristic lines for x;.

and finite mumber of point sensors. Namely different control mputs
are applied m each prespecified intervals and the states are meas-
ured many but frute number of locations by pomt sensors as de-
pictedin Fig. 1.

In this paper, we consider the regulation problem of the hyperbolic
PDE systems. The characteristic lines for x, are shown m Fig. 2.

Employmng the method of charactenistics [Ray, 1981], the sys-
tem on the characteristic line can be reduced to an ODE:

dx| = B.(z)x +C,(z)u.
dtf,

Instead of contmuous update of control mput, we will adopt digatal
control where control mput 1s renewed at discrete times. For this
define

Now consider the region over the time interval [T, T+T] where a
characteristic line passing through (L, ©+T) 1s shown for each sub-
system for x; as depicted in Fig. 3.

If the control mput 15 fixed over the above region, the solution
above the characteristic line for x,, will be the same for each z. Now
consider successive such blocks and assume the control action is
fixed over each block. In each block, the solution will be constant
at each spatial position z above the charactenstic line for x,, whereas
the transient behavior will take place below the characteristic line
for x,. Exploiting this, we consider such a block as a batch ignor-
mg the transient behavior below the charactenistic lme for x,,. Then
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the digital regulation of the hyperbolic PDE systems reduces to a
batch process control problem for which numerous techruques are
available. In this paper, we will apply the Q-ILC techrique that has
been developed recently. In each block, the characteristic line for x,
depicted m Fig. 3 will be used as the representative characteristic
line for x; since, above the charactenistic line for x,, X, will be the
same on any charactenistic lines for x;.

Smee the Q-ILC technique requures the discrete tme model, the
ODE’s need to be discretized. Exact discretization [Rugh, 1996] 1s
destrable. However, if this 1s not possible, approximate discretiza-
tion can also be used. Notice that the time scales are different for
dynamics of each x; on the representative cheracteristic lme. Hence
for coordmation, sampling times of the ODE’s on the representa-
tive characteristic lines should be different for each x;. Namely, if
At, 1s the sampling time for x,,, the sampling time for x,, At,, must
be (a,/a,) At,. Then the spatial location associated with the kth sam-
pling time will be the same for all x’s. Now we assume the pomt
sensors are located in each spatial location corresponding to a sam-
pling pomt so that the location of pont sensors are the integer mul-
tiple of a,At,.

Through discretization, we get the followmg discrete state space
model along characteristic lines:

X0+ D=BOxO)+COUE).
Then G associated with this system is given by

() 0 0
C2) B(2)C(1) 0
G= C@3)

B(3)C(2) B(3)B(2)C(1)

C(N=1) B(N=1)C(N=2) B(N-1)B(N—-2)C(N—-3)

0
0
0

.'- B(N—l)---B(2)C(1)

With this discretized system, we are now ready to apply the Q-ILC
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technique.

From the convergence result of Q-ILC, the states at the dis-
cretized pomts on the charactenstic lines converge to the desired
values. If the discretization 1s exact and the desired state 15 reach-
able, then this 1 turn mmplies that the desired trajectory for origmal
hyperbolic systems 15 achieved along the characteristic Imes. Even
if the desmed state 1s reachable, the approximate discretization will
usually lead to mmor off-set despite of the mtegral action of the Q-
ILC. Thus results from the lack of degree of freedom of control action
and, thus, will not happen if we have sufficient degree of freedom.
However, when the approximation 1s good enough, this off-set will
be negligible simce Q-ILC mumumizes the off-set. Clearly if the de-
sired trajectory 1s achieved above the representative characteristic
line for x,, 1t 15 achieved over each entire block. When the desired
trajectory is not reachable, Q-ILC will minimizes the error between
the desired trajectory and the converged trajectory m the long run.

APPLICATION TO NONISOTHERMAL
TUBULAR REACTOR

Consider the nonisothermal tubular reactor that is a reaction con-
vection process. We assume a first order endothermic reaction takes
place mn the reactor:

ArB

and the associated reaction kinetics follows the Arrhenius Law:

dc -
(&), e

rxn

where C, 1s the concentration of species A; T 1is the reactor tem-
perature; k; 15 the pre-exponential constant, E 1s the activation en-
ergy; R 1 the gas constant. We adopt the followmg standard assump-
tions on the 1deal tubular reactor:

* Perfect radial mixmg takes place

« Diffusion is neghgible

* Densities and heat capacities for A and B are the same and con-
stant

Under these assumptions the species balance for A and energy
balance become

9C, __(9Cu_y oo

% Yoy ke 7TC,

of __ T AH, -emre , U @

at Yoz pcpk°e C"1+pc},V(T’ n
with the boundary conditions

C, 0, t=C, T(0, H=T°
and initial conditions

Ciz 0)=Cy(@. T(z, OFT,(2)
where v 1s the velocity of the flow; AH, is the heat of reaction; p 1s
the density; ¢, is the heat capacity; T, s the jacket temperature, U 1s
the heat transfer coefficient, V 1s the volume of reactor. The length

of the reactor L 1s assumed 1 m. Notice that these are quasi-linear
hyperbolic PDEs. The process parameters are listed m Table 1.

Table 1. Process parameters

Process parameter Value
v {(m/min) 1
E (cal/mol) 2.0x10°
R (cal/mol-K) 1.987
p (ke/it) 0.09
c, (cal/kg-K) 700.231
k, (1/min) 5x10"
U, (cal/min-K} 2000.0
AH (cal/mol} 548.0001
V() 10
L (m) 1
= Stady State
401 Polynomial Fit
3.5
8
% 3.0
:
© 254
2.0
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Fig. 4. Steady state profiles.

The desired steady state profile 1s assumed to be the one when
the jacket temperature 1s constent as 350 °K.. It 1s depicted n Fig. 4.

Far the application of the control strategy proposed i this paper,
we need linear hyperbolic PDEs. Hence we lmearize the quasi-lmear
hyperbolic PDEs around the desired steady state. Since the exact
solution of desired steady state s difficult to fmd, we obtain the an-
alytic expression of the desired steady state through the regression
with the 8th order polynomial (see Fig. 4) and use 1t for lineariza-
tion. It is

C,.i(2=4.00005— 0.44522z—1.725732" - 5.064542°+12.701 547
—8.700482°— 1.921572+5.060862 - 1.761722,
T (2)=320.00048+91 32149z~ 159.629092'+122.339742°
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+23.971472'-115.33292°+76.046422
—-13.002517-2.434487.

Since the shape of the desired steady state 15 simple, the fitting relative
error with the 8th order polynomial was less than 10™*. Through lne-
arization, we have

9%, axl

E/RT ,(2) E - F/RT,(2)

3t == aZ “koe X _kURTfS(Z) Cass(2)%
% axz _AH,.  -ernpe
ot Yoz pe, koe X
(AH) E -swre + U )x+ U
(G Dt o @
with the boundary conditions

x,(0, t)=0, x,(0, H)=0
and 1mtial conditions
(2 0)=x,(2), %z, 0)=x(z)
where
%t 9=C,(t 2-C.(@), %t 2=T(t 2-T.(2), ult, =T/t 2)-350.

Employing the method of charactenistics, we have the following
ODE’s along the characteristic line.

dxy ., _-mmree_ E o ERT0N
dt - kue X kﬂ RTZ;( t) CAs.s(\’t)XZ
dx, __AH, -srren
dt pe, ko X
AH E ) U \)X U
- : C (vt +——unu
( "RT(VD) V)t pe, VS pe,V

These ODE’s are discretized with the samplmg time At=0.025
min. For these ODE’s, the exact discretization 1s not possible and
thus the approximate discretization technique 1s used. To obtain the
better approxmmate discretization, one can employ the more dis-
cretization within a sampling time and solve them for x(k+1) with
mitial condition x(k) and constant control uk).

Now we are ready to apply the control strategy proposed m this
paper. For this, we assume the reactor 1s divided mto five different
zones with the same length and each zone 1s heated by separate heat-
mg jacket Moreover we assume the temperature and the concentra-
tion are measured at every discretized pomt by pomt sensors. Fmally
the control mputs are assumed to satisfy the saturation constraimts:

208<T,(z)<400
or
~52<u<50.

The weightmg matrices associated with Q-ILC are as follows:

Q:f ﬂ,Rzl.
07

Since the control mput must be the same over the each zone con-

trolled by a heating jacket. We need the followmng constraints:
Al =AUgay =7 By, V1 =0, 1,..., 4

The simulation of the closed loop system starting from a non-
steady state trajectory has been carmed out. The simulation results
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Fig. 7. Convergence of u with linearized model.

with the lnearized model are shown in Figs. 5, 6 and 7 whereas
those with the nonlinear model in Figs. 8,9 and 10.
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For both lmearized and nonlmear models, the trajectonies con-
verge to the desired ones. Due to the step changes of the contro]l mput

m the spatial direction, the error trajectories of ¢, are not quite smooth
In practice, these trajectories will be smoothen out since the exact
step change 1s not possible physically.

CONCLUSION

The exasting control strategies for systems described by first order
hyperbolic PDE’s are unconstrained, continuous time and infimte
dimensional ones that need to be approxmmated for computer control.
In this paper, we have proposed a constramed fiite dimensional dig-
ital regulation techmque that guarantees the stability and performance
of the closed loop system. It 1s ustrated with an example that the
proposed techmique 1s promising for computer control of systerns
descnibed by fust order hyperbolic PDE’s subject to constramts.
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